Destruction of Monocytes/Macrophages by Corona Virus Might Explain Peri-Alveolar and Systemic Micro-Thrombi

Editorial

Thomas Stief*
Institute of Laboratory Medicine and Pathobiocemistry, University Hospital Giessen & Marburg, Germany

Received: May 14, 2020; Accepted: May 18, 2020; Published: May 20, 2020

*Corresponding author: Thomas Stief, Central Laboratory, University Hospital, D-35043 Marburg, Germany

Copyright: © 2020 Thomas Stief. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Editorial

An important pathophysiologic complication of Corona virus infection is the generation of micro-thrombi in the alveolar structure (radiologically seen as ground glass opacities) possibly accompanied by systemic micro-thrombi in many organs [1-3], the latter being typical for disseminated intravascular coagulation (DIC).

Monocytes/macrophages (MØ) contain high concentrations of the strongest trigger of blood coagulation, that is tissue factor (TF). Therefore, destroyed MØ trigger extrinsic F7a-driven thrombin generation via TF and intrinsic F12a/kallikrein driven thrombin generation via free DNA/phospholipids [4], kallikrein causing capillary leakage. The Corona virus seems to infect and destroy alveolar macrophages or blood monocytes [5-7].

Therefore, activation of blood coagulation should be monitored via the biomarkers D-Dimer and systemically circulating amidolytic thrombin activity [8]. Using low molecular weight heparin in therapeutic dosage, eventually combined with infusion of a high quality antithrombin drug, elevated systemic thrombin activities should be lowered to less than 120% of normal. Physiological concentrations of generators of non radical singlet oxygen such as taurine-chloramine might be beneficial [9-20].

Acknowledgments

No conflict of interests.

References

14. Stief TW, Slenczka W, Renz H, Klenk HD. Singlet oxygen (\(\text{O}_2^+\)) generating chloramines at concentrations that are tolerable for normal hemostasis function inactivate the lipid enveloped vesicular stomatitis virus in human blood. In: 3rd Symposium on the Biology of Endothelial Cells; Pathophysiology of the Endothelium: Vascular and Infectious Diseases, May 24-26, 2001, Giesens, Germany, Abstr. D10

17. Stief TW. Singlet oxygen and thrombin generation: 0.5-1 mM chloramine as anti-viral therapy. Hemostasis Laboratory 2010; 3: 311-324.

