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Introduction
The prevalence and economic costs of Alzheimer’s 

disease (AD) and other types of dementia are increasing 
along with the increasing elderly population [1]. It is 
therefore important to identify the modifiable risk factors 
for dementia [2]. Mild cognitive impairment (MCI) is an 
intermediate stage in the neurodegenerative pathology 

from normal brain aging to dementia [2]. Elderly individuals 
with MCI are at high risk of developing dementia, including 
AD and vascular dementia (VaD). Subjects with a diagnosis 
of MCI constitute a clinical entity that can be subjected to 
preventive measures [2]. B vitamins such as folate, vitamin 
B2, vitamin B6, and vitamin B12 are involved in one-carbon 
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executive function. Patients with an MMSE score ≥27 
points were categorized as having normal cognitive 
function, those with a score between 23 and 26 points 
were categorized as having mild cognitive impairment 
(MCI), and those with a score <23 points were categorized 
as having dementia.

Statistical analyses

Statistical analyses were performed using JMP version 
17.0.0 (SAS Institute Japan, Tokyo). The difference 
between men and women was analyzed by Student’s t test. 
Comparisons of subjects’ characteristics among normal, 
MCI, and dementia were carried out using one-way 
ANOVA followed by Tukey‒Kramer multiple comparison 
tests. Spearman’s correlation was used to examine the 
relationship between plasma Hcy and serum folate, vitamin 
B12, creatinine concentrations, eGFR, and other biomarkers. 
Repeated measures ANOVA was used to analyze the effects 
of Memorin® on Hcy, LDL, TG, vitamin B12, serum folate 
concentration and MMSE score.

Molecular illustration

The 3D chemical structures of tetrahydrofolate, 
5-MTHF, folate, homocysteine, cystathionine, cysteine, 
and methionine were imported from the PubChem library 
(https://pubchem.ncbi.nlm.nih.gov/docs/about). 3D 
protein structures of methionine synthase, cystathionine 
ß-synthase, and MTHFR were retrieved from the RCSB 
Protein Data Bank (RCSB PDB, https://www.rcsb.org and 
then imported into UCSF Chimera-X (https://www.cgl.
ucsf.edu/chimerax/). The molecules are displayed with 
molecular surfaces colored by amino acid hydrophobicity.

Results
In Study 1, 85 patients who visited the clinic with 

complaints of memory impairment from May 2018 to 
February 2023 were enrolled. In Study 1, the patients who 
had been prescribed any supplement containing vitamin 
B12 or folate prior to visiting the clinic were excluded. 
Background profiles of the subjects in Study 1 are shown in 
Table 1. They were aged 69.4 years on average with no sex 
difference. Sex differences were detected in body height, 
body weight, BMI, creatinine, plasma Hcy, and MMSE score. 
The average plasma Hcy level in men (11.9 ± 5.3 nmol/
mL) was significantly higher than that in women (9.2 ± 2.2 
nmol/mL) (p=0.0019). The average MMSE score in men 
(25.8 ± 5.2) was significantly higher than that in women 
(22.3 ± 7.9) (p=0.0284). There was no sex difference in 
serum albumin, MCV, eGFR, TGs, LDL, serum folate, serum 
vitamin B12, or HbA1c. Their serum concentrations of 
albumin, eGFR, triglyceride (TG), LDL, and HbA1c were 
within the reference range, suggesting that these subjects 
were not generally malnourished.

transfer reactions such as methylation, which is necessary 
for the production of monoamine neurotransmitters, 
phospholipids, and nucleotides in the brain [3,4]. Low 
concentrations of these B vitamins have been associated 
with HHcy [5,6], which is neurotoxic [7]. Moreover, several 
cross-sectional and longitudinal studies have indicated 
that HHcy is an independent risk factor for impaired 
cognitive function [8-11], although other studies found no 
significant association between Hcy and cognitive function 
[12,13].

For HHcy, various vitamin-B complex supplements 
are available to date. However, absorption of vitamin B12 
from gastrointestinal mucosa is often impaired in the 
elderly population [14], and the appropriate duration 
and amount of vitamin B supplementation required for 
the improvement of HHcy in elderly patients is not well 
defined. In the current study, the efficacy of Memorin®, a 
commercially available vitamin-B complex supplement for 
HHcy in elderly individuals, was investigated.

Materials and Methods
Subjects and study design

Study 1 was a case‒control study conducted with 85 
patients who visited the Ochanomizu Health & Longevity 
Clinic from May 2018 to February 2023. Written consent 
to participate in this study was obtained from each subject 
after explanation of the objective and protocol of this study. 
Subjects were excluded if they were taking vitamin B12, 
folate, or vitamin B

6
 at the time of enrollment.

Study 2 was an intervention study conducted from 
June 2020 to February 2023 for 42 patients with 
hyperhomocysteinemia from Study 1. The dietary 
supplement Memorin® was administered orally once a 
day for 10 months. Blood chemistry and Mini-Mental State 
Examination (MMSE) were done before, 4 months, and 10 
months after the administration of Memorin®.

Dietary supplementation

Memorin® (Lequio Pharma Co. Ltd., https://www.
lequio-pha.co.jp/en/index.html) containing 50 mg 
curcuminoids, 55 mg DHA, 10 mg squalene, 5 mg turmeric 
powder, 2 mg piperine, 10 mg vitamin B2, 12.5 mg vitamin 
B6, 250 μg vitamin B12, 400 μg folic acid, 50 mg vitamin C, 
25 mg vitamin E, 3.2 mg vitamin B1, and 13 μg huperzine A 
in one capsule.

Cognitive evaluations

Cognitive evaluations were performed with the Mini-
Mental State Examination (MMSE). The MMSE is a well-
validated screening tool for global cognitive impairment 
and dementia in clinical settings [15]. It evaluates multiple 
cognitive domains, including attention, memory, and 

https://pubchem.ncbi.nlm.nih.gov/docs/about
https://www.rcsb.org
https://www.cgl.ucsf.edu/chimerax/
https://www.cgl.ucsf.edu/chimerax/
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Plasma Hcy concentrations were higher in the MCI and 
dementia groups than in the normal cognitive function 
group.

Then, the subjects in Study 1 were categorized into 
normal cognitive function (n = 43), MCI (mild cognitive 
impairment) (n = 18), and dementia (n = 24) groups 
according to MMSE score, as mentioned in the Methods 
section (Table 2). To analyze the association between 
cognitive function and biomarkers such as body height, 
body weight, BMI, serum albumin, MCV, creatinine, eGFR, 
TGs, LDL, plasma Hcy, serum folate, serum vitamin B12, 
HbA1c, and CRP, the values of these biomarkers among the 
normal control group, MCI group, and dementia group were 
compared using ANOVA (Table 2). There were significant 
differences in age and body height between the MCI and 
normal control groups and between the normal dementia 
and control groups. A significant difference was also found 
in HbA1c between the MCI and normal control groups 
(P=0.0377). Although not statistically significant, the 
plasma Hcy concentration was found to be higher in the MCI 
group (10.79 ± 2.49 nmol/mL) and dementia group (11.00 
± 4.90 nmol/mL) than in the normal cognitive function 
group (9.74 ± 3.84 nmol/mL). The serum concentration of 

folate was found to be lower in the MCI group (15.1 ± 10.03 
ng/mL) and dementia group (14.5 ± 15.7 ng/mL) than that 
in the normal cognitive function group (17.5 ± 15.6 ng/
mL). There was no difference in BMI, serum albumin, MCV, 
creatinine, eGFR, TG, LDL, serum vitamin B12, or CRP among 
the normal control, MCI and dementia groups (Table 2).

Total
(n = 85)

Men
(n=34)

Women
(n =51) p value

Age 69.4 ± 12.7 68.1 ± 12.4 70.2 ± 12.9 0.4450

Body Hight (cm) 158.2 ± 
10.3 166.7 ± 8.4 151.7 ± 6.3 <0.0001**

Body Weight (Kg) 53.5 ± 10.8 62.4 ± 8.9 47.6 ± 7.3 <0.0001**

BMI (Kg/m2) 21.4 ± 3.1 22.5 ± 3.0 20.7 ± 3.0 0.0114* *

Serum Albumin (g/dL) 4.20 ± 0.29 4.20 ± 0.31 4.20 ± 0.29 0.9881

MCV (fL) 94.6 ± 4.8 94.4 ± 3.8 94.8 ± 5.4 0.6538

Creatinine (mg/dL) 0.72 ± 0.30 0.88 ± 0.43 0.62 ± 0.11 0.0001**
eGFR (mL/
min/1.73m2) 73.9 ± 15.3 73.9 ± 17.6 73.8 ± 13.7 0.9714

TG (mg/dL) 103.6 ± 
50.6

112.4 ± 
44.6 97.7 ± 53.8 0.1901

LDL (mg/dL) 124.2 
±37.6

125.3 ± 
42.3

123.4 ± 
34.5 0.8154

Plasma Hcy (nmol/
mL) 10.3 ± 3.9 11.9 ± 5.3 9.2 ± 2.2 0.0019**

Serum Folate (ng/mL) 16.1 ± 14.6 15.1 ± 11.3 16.8 ± 16.5 0.6020
Serum Vitamin B12 

(pg/mL)
590.8 ± 
451.8

526.4 ± 
358.4

633.7 ± 
503.4 0.2863

HbA1c (%) 5.45 ± 0.31 5.46 ± 0.30 5.44 ± 0.31 0.6899

CRP (mg/dL) 0.078 
±0.145

0.112 ± 
0.184

0.056 ± 
0.107 0.0826

MMSE 23.7 ± 7.1 25.8 ± 5.2 22.3 ± 7.9 0.0284*

Table 1: Background profiles of the subjects (Study 1)

Data are expressed as mean ± SD.
Comparison was made according to gender using Student t test.
*Statistically significant (p<0.05).
**Statistically significant (p<0.01).

Normal
(n = 43)

MCI
(n =18)

Dementia
(n =24) p value

Age 63.6 ±11.9 74.3 ± 11.2** 76.1 ± 
10.2** <0.0001**

Body Hight (cm) 161.6 ± 
10.4

155.2 ± 
10.3**

152.7 ± 
7.3** 0.0012**

Body Weight (Kg) 54.7 ± 12.0 54.7 ± 9.2 50.5 ± 9.2 0.2731

BMI (Kg/m2) 20.8 ± 3.1 22.6 ± 2.4 21.6 ± 3.4 0.1027

Serum Albumin (g/dL) 4.25 ± 0.27 4.13 ± 0.34 4.17 ± 0.29 0.2993

MCV (fL) 94.2 ± 5.0 95.7 ± 4.8 94.8 ± 4.5 0.5313

Creatinine (mg/dL) 0.70 ± 0.16 0.71 ± 0.15 0.76 ± 0.53 0.7541
eGFR (mL/
min/1,73m2) 77.1 ± 13.8 70.7 ± 12.7 70.5 ± 18.7 0.1496

TG (mg/dL) 98.0 ± 52.3 119.8 ± 60.1 101.3 ± 
37.5 0.3033

LDL (mg/dL) 122.0 ±34.4 135.8 ± 42.4 119.4 ± 
39.2 0.3294

Plasma Hcy (nmol/
mL) 9.74 ± 3.84 10.79 ± 2.49 11.00 ± 

4.90 0.3931

Serum Folate (ng/mL) 17.5 ± 15.6 15.1 ± 10.03 14.5 ± 15.7 0.6827
Serum Vitamin B12 

(pg/mL)
652.8 ± 
509.6

434.4 ± 
253.5

596.9 ± 
444.1 0.2284

HbA1c (%) 5.38 ± 0.25 5.59 ± 0.33* 5.47 ± 0.35 0.0377*

CRP (mg/dL) 0.06 ± 0.11 0.14 ± 0.25 0.07 ± 0.08 0.1658

MMSE 28.9 ± 1.1 24.2 ± 1.4** 14.0 ± 5.6** <0.0001**

Table 2: Characteristics of the subjects according to MMSE score 
(Study 1).

Data are expressed as mean ± SD.
Comparison was carried out using ANOVA, followed by Tukey-Kramer 
muyltiple comparison test.
*Statistically significant (p<0.05).
**Statistically significant (p<0.01).

Correlation of plasma Hcy, serum folate and vitamin 
B12 concentrations

To elucidate the association of the biomarkers listed 
in Study 1 with plasma Hcy, two-way ANOVA showed that 
plasma Hcy was significantly correlated with serum folate, 
serum vitamin B12, creatinine and eGFR. As shown in Figure 
1A, serum folate was negatively correlated with plasma 
Hcy (r = -0.297, p=0.0088) with the linear regression 
equation “Folate = 29.979058–1.3541775*Hcy”. Serum 
vitamin B12 was negatively correlated with plasma Hcy (r 
= -0.297, p=0.0140) with the linear regression equation 
“VB12 = 971.27356–37.975914*Hcy” (Figure 1B). Serum 
creatinine was positively correlated with plasma Hcy (r = 
0.498, p<0.001) with the linear regression equation “Cre 
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= 0.4704215 + 0.0227039*Hcy” (Figure 1C). Finally, eGFR 
was negatively correlated with plasma Hcy (r = -0.280, 
p=0.0137) with the linear regression equation “eGFR = 
86.350383-1.2094062*Hcy” (Figure 1D).

or 10 months after administration of Memorin® (Table 3, 
Figure 2).

Figure 1: Correlation of Hcy with folate, vitamin B12, creatinine, and eGFR.
Correlation between Hcy and serum folate (A), serum vitamin B12 (B), serum 
creatinine (C), and eGFR (D). The linear regression line is shown by the red 

line. The linear regression equation, r value and p value are shown in the 
upper panel of the graph. The r value represents Spearman’s correlation 

coefficient. *Statistically significant (p<0.05). **Statistically significant 
(p<0.01).

Biomarkers Before 4 month 10 month
Hcy (nmol/mL) 12.3 ± 4.58 10.0 ± 3.85** 10.16 ± 3.12**

LDL (mg/dL) 122.0 ± 36.3 127.6 ± 32.2 125.2 ± 31.2

TG (mg/dL) 103.2 ± 49.0 118.1 ± 85.8 116.3 ± 76.1

Vitamin B12 (pg/mL) 725.6± 
1717.2

1018.1 ± 
1829.6**

1042.9 ± 
1568.8**

Folate (ng/mL) 19.4 ± 33.7 43.0 ± 86.3** 32.5 ± 16.9**

MMSE score 22.8 ± 7.3 22.3 ± 7.9 21.8 ± 8.7

Table 3: Biomarkers before and after the administration of Memorin 
(Study 2, n = 42)

Data are expressed as mean ± SD.
Comparison was carried out using repeated measures ANOVA.
**Statistically significant (p<0.001).

Administration of Memorin® lowered the plasma 
Hcy concentration in HHcy patients

In Study 2, Memorin® was prescribed for 10 months 
to 42 patients from Study 1 who showed HHcy in the 
first visit. Memorin® is a dietary supplement containing 
curcuminoids, DHA, squalene, turmeric powder, piperine, 
vitamin B2, vitamin B6, vitamin B12, folic acid, vitamin C, 
vitamin E, vitamin B1 and huperzine A. Plasma Hcy, LDL, 
TG, vitamin B12, folate, and MMSE were assessed 4 months 
and 10 months after Memorin® administration. The initial 
average plasma Hcy concentration in the Study 2 group (12.3 
± 4.58 nmol/mL) significantly decreased after 4 months 
(10.0 ± 3.85 nmol/mL) and 10 months (10.16 ± 3.12 nmol/
mL) of Memorin® administration (p<0.01) (Table 3, Figure 
2A). The initial average serum vitamin B12 concentration 
(726.6 ± 1717.2 pg/mL) significantly increased after 4 
months (1018.1 ± 1829.6 pg/mL) and 10 months (1042.9 
± 1568.8 pg/mL) of Memorin® administration (p< 0.01) 
(Table 3, Figure 2D). The initial average serum folate 
concentration (19.4 ± 33.7 ng/mL) significantly increased 
after 4 months (43.0 ± 86.3 ng/mL) and after 10 months 
(32.5 ± 16.9 ng/mL) of Memorin® administration (p< 0.01) 
(Table 3, Figure 2E). However, no significant changes were 
found in LDL, TG, and MMSE scores before and 4 months 

Figure 2: Plasma Hcy, LDL, triglyceride (TG), vitamin B12, serum folate, 
and MMSE scores of 42 patients before, 4 months, and 10 months after 
the administration of Memorin®. Data are expressed as the mean + SD. 

Comparisons were carried out using repeated-measures ANOVA. ** 
Statistically significant (p<0.01).

Discussion
In the present study, a case‒control design was applied 

to examine the associations of plasma Hcy, serum vitamin 
B12, folate and cognitive function in patients with normal 
cognitive function, MCI, and dementia. The plasma 
Hcy concentration was higher in MCI and dementia 
patients than in the normal cognitive function group. 
The pharmacological effect of Memorin®, a commercially 
available vitamin-B complex dietary supplement, was 
evaluated on the lowering effect of plasma Hcy in patients 
with HHcy.

There have been reports on the association between 
folate, vitamin B12 or Hcy and cognitive function [8,10,16,17]. 
HHcy has been reported to be an independent risk factor 
for cognitive decline in a case‒control study of MCI and AD 
in China [8] and an Italian cohort study on dementia and 
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AD [10]. In the current study, the plasma Hcy concentration 
was elevated in the MCI and dementia groups compared 
with those in patients with normal cognitive function, 
but the differences were not statistically significant. One 
of the factors that limited the statistical significance may 
be the smaller number of patients with HHcy enrolled in 
the current study compared to the previously published 
reports [8,10]. A larger number of cases and controls would 
be needed to achieve statistical significance. In the current 
study, a sex difference was found in plasma Hcy, in which 
men showed significantly higher Hcy concentrations than 
women (Table 1). A previous study, the cross-sectional 
Coronary Risk of Insulin Sensitivity in Indian Subjects 
study (CRISIS), showed a sex difference in Hcy between 
men and women [18]. The authors suggested that sex 
differences in plasma Hcy may be related to sex hormone 
concentrations, lifestyle factors such as diet and smoking, 
and sexual dimorphism in gene expression that contribute 
to differences in body composition [18]. Mudd and Poole 
also suggested that the difference in Hcy between men and 
women may be related to creatine or creatinine synthesis 
and the higher muscle mass in men [19]. This possibility is 
compatible with the positive correlation observed between 
plasma Hcy and serum creatinine concentration in Study 1 
(Figure 1C).

Metabolically, Hcy is either metabolized to methionine 
by methionine synthase or to cystathionine by cystathionine 
ß-synthase, as shown in Figure 3. Methionine synthase is 
one of two enzymes that require cobalamin or vitamin B12 
for their enzymatic activity and catalyzes the transfer of a 
methyl group from N5-methyltetrafolate to homocysteine, 
generating tetrahydrofolate (THF) and methionine (Figure 
3). Vitamin B12 serves as an intermediate methyl group 
carrier and cycles between methylcobalamin and cob(I)
alamin [20]. Cystathionine ß-synthase catalyzes the first 
step of the transsulfuration pathway from homocysteine to 
cystathionine, uses pyridoxal-phosphate (vitamin B6) as a 
cofactor, and is allosterically regulated by effectors such as 
the ubiquitous cofactor S-adenosyl-L-methionine (AdoMet) 
[21]. Methylenetetrahydrofolate reductase (MTHFR) is the 
rate-limiting enzyme in the methyl cycle and catalyzes 
the conversion of 5,10-methylenetetrahydrofolate to 
5-methyltetrahydrofolate (5-NTHFR), a cosubstrate 
for Hcy remethylation to methionine (Figure 3). Some 
genetic variations in the MTHFR gene have been reported 
to influence susceptibility to occlusive vascular disease, 
neural tube defects, Alzheimer’s disease and other forms 
of dementia, colon cancer, and acute leukemia [22].

As a dietary supplement, Memorin® not only contains 
a vitamin-B complex, including vitamin B1, B2, B6, B12, 
and folate, but also curcuminoid, turmeric powder, and 
piperine, which may facilitate the absorption of vitamin 
B from the gastrointestinal tract. When HHcy is not 
improved after 4 months of administration of Memorin® 

for 4 months, an intravenous administration of a vitamin-B 
complex was applied for HHcy patients who poorly absorb 
B vitamins from the gastrointestinal route.

Figure 3: Homocysteine degradation pathway. Homocysteine is catalyzed 
by methionine synthase to methionine in concomitant catalysis of 5-MTF 
(5-methyltetrahydrofolate) to THF (tetrahydrofolate). Methionine synthase 
(PDB ID 1K98) requires vitamin B12 as a cofactor. 5-MTHF (serum folate) 

is catalyzed from folate (dietary origin). Homocysteine is also catalyzed by 
cystathionine ß-synthase to cystathionine (PDB ID 7XOH) and then further 
catalyzed to cysteine. Cystathionine ß-synthase requires vitamin B6 as a 

cofactor. MTHFR, 5, 10-methyltetrahydrofolate reductase (PDB ID 6FCX). 
*Methyl residue transferred to methionine by methionine synthase.

No significant improvements were found with MMSE 
score in Study 2 of the current study, although the majority 
of patients were administered cytokines that induce 
neurogenesis and angiogenesis as previously described 
together with the dietary supplement [23-25]. Various 
factors, including nutritional status, physical activity 
levels, and other lifestyle factors, influence the cognitive 
function of HHcy patients, and further study is needed to 
define what combination of treatments is optimal for the 
improvement of cognitive function in HHcy patients.

Conclusion
Higher plasma Hcy concentrations as well as lower 

serum folate concentrations were associated with 
cognitive decline in outpatients who visited the clinic. 
Administration of Memorin® conferred the maintenance of 
appropriate folate and vitamin B12 status and lowered the 
concentration of plasma Hcy.
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